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Every convex subset A of a locally convex Hausdorff space (X, r) is equipped 
with the a-algebra N generated by its r-relatively open subsets. Within the set 
f ~ ( ~ )  of probability measures on ~ two particular convex subsets are consid- 
ered: (a) the set f~'~(N) of probability measures with a separable support, and 
(b) the set f~;(~) of probability measures with a compact convex support. If A 
is the base of a cone in X, then there exists an affine barycenter map from 
f ~ ( 9 )  onto A whose composition with the natural embedding of A in fI~(N) 
yields the identity map on A, and every v-continuous aNne transformation of A 
can be represented by an affine transformation of f~;(N) that is induced by a 
Markov kernel. If (X, r) is a Banach space and A is a closed, bounded, generating 
cone base in X that is contained in a hyperplane, then analogous results are 
obtained with respect to ~~(-@). Since the state spaces considered in noncommu- 
tative measure theory are cone bases and every change in time of an empirical 
system can be thought of as an anne transformation of the associated state space 
(Schr6dinger picture), the existence of these representation theorems implies that 
the time evolution of general empirical systems can be described by dynamical 
concepts borrowed from classical probability theory. 

1. I N T R O D U C T I O N  

N o n c o m m u t a t i v e  m e a s u r e  t h e o r y  deals  wi th  m e a s u r e s  on  orthomodular  

posets .  I t  p r o v i d e s  a f r a m e  tha t  e m b r a c e s  c lassical  m e a s u r e  t heo ry ,  c lass ical  

p r o b a b i l i t y  theory ,  a n d  q u a n t u m  p r o b a b i l i t y  theory .  O r t h o m o d u l a r  pose t s  

are  used  to desc r ibe  the  ( logica l )  s t ruc tu re  o f  genera l  e m p i r i c a l  systems,  

i nc lud ing  the  ones  f r o m  t r a d i t i o n a l  q u a n t u m  mechan ics .  I f  the  s t ruc tu re  o f  

an  e m p i r i c a l  sys tem is r ep re sen t ed  by an  o r t h o m o d u l a r  pose t  L,  t hen  the  

states o f  the  sys tem can  be  r ep re sen t ed  by probabi l i ty  measures  on  L (Bel t ra -  

met t i  and  Cassinel l i ,  1981 ; F o u l i s  a n d  R a n d a l l ,  1972; G u d d e r ,  1979). 
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With the above interpretational context in mind, we define a state space 
as a nonempty convex set of  probability measures on an orthomodular 
poset. Our conceptual framework suggests that the dynamical behavior of  an 
empirical system can be described by transformations of  the associated state 
space. The minimal requirement these transformations ought to satisfy is 
that they preserve mixtures (convex combinations) of  states (which is 
sufficient for them to be affine maps). This constitutes our definition of a 
state space transformation. 

Mathematically speaking, a state space A is a cone base in a real vector 
space X. This is the mathematical framework in which we derive our results. 
Instead of  state space transformations, we shall thus rather speak of cone 
base transformations. Choosing this more general setting, we can also accom- 
modate the convexity approach to quantum mechanics taken by Ludwig 
(1983/1985) and Mielnik (1974). 

In order to represent cone base transformations by Markov kernels, we 
assume that X is equipped with a locally convex Hausdorff topology v and 
consider probability measures on the o--algebra ~ of  Borel subsets of A. 
From a Bayesian point of  view such probability measures can be interpreted 
as credibilities, if A is a state space (Randall and Foulis, 1976). By ~ ( N )  
we denote the set of  all probability measures on 9 ,  while f ~ ( N ) ,  resp. 
~ , ( ~ ) ,  stands for the set of probability measures with a separable, resp. 
compact convex, support. Every continuous cone base transformation T can 
be assigned a Markov kernel P r  on A x ~ as follows: 

PT(X, D)= 1D(T(x)), x6A, D ~  

where 1D(X) denotes the indicator function of the set D. The kernel Pr 
induces an affine transformation T of  f~o(~) that maps f2s(~)  and f ~ ( ~ )  
into themselves. 

For  a complete representation we need to establish some sort of an 
affine correspondence between the set A and a suitable convex subset of  
f2o(~). The easiest way to do this is by means of the map 

x~A ~ Pm~(x, " ) 

which embeds A in each of the sets ~ ( ~ ) ,  ~ ( ~ ) ,  and ~ ( ~ ) .  This map is 
affine in the sense that 

fAf(z)~5(~ tix~) (dz)=~ ti fAf(z)3(xi) (dz) 

holds for all continuous linear functionals f o n  X, all Xl . . . . .  x, sA, and all 
t, . . . . .  t, eR  with ~ tl = 1 and ~ tixiEA. The canonical way of trying to map 
~ ( ~ )  into A is by assigning each co ~ o ( ~ )  its barycenter functional j(co) 
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in X*' (the algebraic dual space of X*). This functional is uniquely defined 
by the condition 

j(co)(f) = fAf(z) co(dz) 

for all continuous linear funct ionalsfon X. Ifj(co) belongs to A (considered 
as a subset of X*') ,  then co is said to have a barycenter xoo in A. 

We show that: (a) every coef~,(~) has a barycenter in A; and (b) if 
(X, r) is a Banach space that is generated by a closed, bounded cone base 
A, contained in a hyperplane, then every c0ef/~(N) has a barycenter in A. 

Moreover, we show that in each of these cases 

r(xod= x~(o~) (,) 

holds for all continuous cone base transformations T of A and all 
c0ef~;(N) [case (a)], resp. c0es [case (b)]. 

We apply these results to the state spaces of orthomodular posets and 
their transformations. By ~)(L) we denote the set of states on an orthomodu- 
lar poset L. This set is compact in the product topology r of R L. Hence, if 
A = ~(L),  then every co e f /~(~)  has a compact support and thus a barycenter 
xo) in A and satisfies equation (.). Although smaller state spaces A are usually 
not compact in this topology, it is often possible to find a norm on lin(A) 
such that X, the topology r induced by this norm, and A fit into setting (b). 
For instance, this is true of the two state spaces formed by the o--additive, 
resp. completely additive, elements of s In all examples associated with 
traditional Hilbert space quantum mechanics, the state spaces A are even 
separable in their respective norm-topologies, so that every co ~f/~(~)  has a 
barycenter in A and satisfies equation (,)  with respect to any state space 
transformation T. Every such example is derived from a separable complex 
Hilbert space H, by taking the lattice of orthogonal projections on H as the 
orthomodular poser, the convex set of yon Neumann density operators as 
the state space A, and the trace-norm topology on A as ~-. 

Although the main concern of this paper is to show that the time 
evolution of general empirical systems can be described in terms of dynam- 
ical concepts borrowed from classical probability theory, some auxiliary 
results might be of interest in their own right. We think in particular of the 
results concerning barycenters of measures. Whereas boundary measures on 
compact convex sets have been studied intensely (Alfsen, 1971), it seems 
that less attention has been paid to more general measures on noncompact 
convex sets. Our approach might be a small contribution to filling this gap. 
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2. PRELIMINARIES 

Let (L, ___, ' ) be an orthocomplementedposet, # L  > 1, and let the smallest 
and largest elements of L be denoted by 0 and 1, respectively. A pair (p, q) 
of elements of L is said to be orthogonal, denoted p I q, ifp _q' .  Notice that 
the relation • is symmetrical. A subset A of L is said to be orthogonal if 
p •  holds for allp,  q~L with p r  

An orthomodularposet (OMP) is an orthocomplemented poset (L, _<, ') 
satisfying: (i) i fp  _J_ q, then p v q exists; and (ii) i fp  < q, then q =p  v (q ^p ' )  
(orthomodular identity). 

An orthomodular poset (L, <, '), for which (L, <) is a lattice is called 
an orthomodular lattice (OML). For more details see, e.g., Gudder (1979), 
Kalmbach (1983), and Rfittimann (1979). 

We mention two important examples of orthomodular lattices: 
1. Let (L, <) be a Boolean lattice, and let ': L - , L  be its uniquely 

defined complementation map. Then (L, <, ') is an OML. 
2. Let H be a complex Hilbert space, and let ( ~ ,  _ )  be the lattice 

formed by the closed subspaces of H. Then the triple (L~, _~, • where • 
denotes the map assigning each L e &  ~ its unique orthogonal complement, is 
an OML. 

Let (L1, < t ,  ,1) and (L2, <2, ,2) be two orthomodular posets. A map 
�9 : L1--*Lz satisfying (i) ~(11)= lz and (ii) ifp• q, then (I)(p)3-2 ~(q) and 
�9 (p vl q) = ~ ( p )  v2 ~(q), is called a homomorphism from (LI, <l ,  'i) to 
(L2, <2, ,2). Notice that, as a consequence of orthomodularity, a homo- 
morphism (I) preserves order and orthocomplementation as well. A homo- 
morphism ~ :  Lj ~ L2 is called a c-homomorphism, resp. r 
if for all orthogonal, resp. countable orthogonal, subsets C of L~ with supre- 
mum in (Lt,  <__~), sup2 (I~(C) exists in (L2, <:2) and equals ~(supl C). Conse- 
quently, a c-homomorphism, resp. cr-homomorphism, from (L~, <l ,  ,1) into 
(L2, <2, ,2) maps maximal orthogonal, resp. countable maximal ortho- 
gonal, subsets of L1 into maximal orthogonal subsets of L2 (which may 
contain 02). 

If  (L, <, ') is an orthomodular poset, then an element/1 of the vector 
space R L is said to be a measure on L ifp • q implies p(p v q) =/.t(p) +p(q) .  
The measures on L form a linear subspace of R L. A measure p is said to be 
positive if # (p)_> 0 for all p ~ L. By K(L) we denote the collection of positive 
measures on L. Notice that the map L ~ 0 is an element of K(L). An element 

of K(L) with p (1) = 1 is said to be a state or probability measure on L. By 
f~(L) we denote the (convex) set of states. The linear space generated by 
E~(L) is denoted by J(L). Its elements are called Jordan measures. Since ~(L)  
is convex, K(L) equals R+g~(L) = {tp:/.t~f~(L), teR+} and J(L) equals 
K(L) -  K(L) = { o ' - p :  p, r 
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A measure p on L is said to be completely additive, resp. cr-additive, if 
for every maximal, resp. countable maximal, orthogonal subset A of L 

p(1) = lim(p(sup B))B~As, 

where (A F, _ )  denotes the collection of finite subsets of A directed by set 
inclusion. By ~c(L), resp. f~ (L) ,  we denote the convex set formed by the 
completely additive, resp. o--additive, states on L. For a more detailed treat- 
ment of these measure-theoretic concepts we refer to Fischer and Riittimann 
(1978) and Riittimann (1979, 1985). 

3. MEASURES ON CONVEX SETS 

Let X be a real vector space. A subset C of X is said to be convex, resp. 
affine, if for all x, y s C and t ~ [0, 1 ], resp. t s R, t x  + (1 - t )y  belongs to C. A 
subset C of X is said to be positive if it contains 0 and sx  + ty belongs to C, 
for all x, y ~ C  and s, t~R+.  A positive subset Cwith C n  - C =  {0} is called 
a cone. For every subset C of X we denote its convex, resp. affine, resp. 
positive, hull by con(C), resp. aft(C), resp. pos(C). If  C is nonempty and 
convex then pos(C) equals R + C =  {tx: x s C ,  t~R+}. A convex subset C of 
X is said to be a cone base if 0~aff(C).  Indeed, the positive hull of a convex 
set C is a cone if and only if C is a cone base. 

For every subset C of X let a c o n ( C ) = c o n ( C u -  C) (absolute convex 
hull of C). If  C is convex, then acon(C) coincides with the set 
{ s c r - r p :  p, e r iC;  r, s s R + ,  r + s  = 1}. If  C is a nonempty convex subset of 
X that generates X [i.e., X = l i n ( C ) ] ,  then we may define the Minkowsk i  
functional Pacon(c)(X) = inf{t~R+ : x ~ t  acon(C)}, which is a seminorm on X. 

In the sequel we further assume that the space X carries a locally convex 
Hausdorff topology r. By X* we denote the topological dual space of (X, r), 
and X*' will stand for the algebraic dual space of X*. We shall use the 
symbol Jx  to denote the canonical embedding map from X into X*'. 

From now on let A be a nonempty convex subset of X, and let ra denote 
the relative topology of r on A. If A is r-bounded (i.e., for each open 
neighborhood U of 0 there exists t > 0 such that tA___ U), then every f ~ X *  
maps A into a bounded subset of R. By A=(A) we denote the vector space 
of rA-continuous affine functionals on A [i.e., a map f :  A ~ R belongs to 
A,(A) if and only if it is rA-continuous and 

f (  tx  + ( I - t)y) = t f ( x )  + ( 1 - t ) f ( y )  

for all x, yeA and all tER with t x +  (1 - t )yEA].  For eachf~X* the restric- 
tion f[  A belongs to At(A). 

Let ~ denote the or-algebra on A generated by the ra-open subsets of 
A, and let ~o(@) stand for the convex set of a-additive probability measures 
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on 9 .  A standard argument shows that for every f eX*  the restriction f[ A 
is g-measurable. For every xez~ and each D e N  we define 

{~ if xcD 
~(x)(D) = if xr (1) 

Notice that ~(x)(D)= le(x), where lo(x) denotes the indicator function of 
the set D. Clearly, ~(x) belongs to fl~(N), for every xeA. Moreover, since 
the topology r is Hausdorff, the map 3 : A ~ Y~(N) is injective. 

For coerCe(N) a n d f e X *  we define 

j(co)(f) = f f(x) co(dx) (2) 

provided the integral exists. If  A is v-bounded, then (i) j(co)(f) is defined 
for all co e ~ ( N )  a n d f e X * ,  (ii)j(co) is a linear functional on X*, for every 
co e ~ ( N ) ,  and (iii)j: ~o(N) ---, X*' is an affine map. It is easy to prove that, 
for each xeA, j(~(x)) is defined as an element of X*' and 

Jx(x) =j(~(x)) (3) 

If coeds(N) is such that j(co) is defined as an element of X*' which also 
belongs to Jx(A), then we set 

j'(co) =xo) (4) 

where x~o is the unique element of A satisfying j(co)= Jx(x~o). The element 
x~o is called the barycenter of co in A (Alfsen, 1971). 

We now define two subsets of Y2~,(N) that will be important in the 
sequel. 

Definition 3.1. An element co of Y~(N) is said to have a separable 
support if there exists a r-separable set D in N such that co(D)= 1. The 
collection of all such elements will be denoted by f)-~(N). 

An element co of Y~=(N) is said to have a compact convex support if 
there exists a v-compact convex subset D of A such that co(D)= 1. The 
collection of all such elements will be denoted by O~(N). 

It is easy to see that ~ , ( N )  is a convex subset of Y~(N). To see that 
the set f ~ ( N )  is convex, observe that the convex hull of the union of two 
compact convex sets is again compact (Koethe, 1969). Obviously, for each 
xeA the measure ~(x) belongs to both f ~ ( N )  and g~(~) .  
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Theorem 3,2. If A is a nonempty convex subset of X, then for each 
o9 e f l~(~) there exists x~o e A such that 

f Af(x og(dx)=f(xo,) 

for all feA~(A). 

Proof Let o9 be an arbitrary element of f ~ ( ~ ) .  Then there exists a 
compact convex subset F of A such that co(F)= 1. LetfeA~(A) and neN be 
arbitrary. Since F is compact, there exists K e N  such that f (F)~_ ( -K,  K). 
We now define a partition of F as follows: 

P ( f , n ) = ( f - l ( [ - K + ~ , - K + ~ ) )  c~ F : j =  0 . . . . .  2Kn-11 

Clearly, all elements D of P(f, n) belong to N and satisfy d(f(D)) < 1/n, 
where d denotes the diameter function on 2 R. For every finite subset F--- 
{fi . . . . .  fi} of Ac(A) and each neN, let P(F, n) denote the coarsest refine- 
ment of the partitions P(fi, n), . . . ,  P(fi, n), i.e., 

P(F, n)={ ~i=l Di: DieP(f~' n)' i= l . . . . .  k } -  {~}  

let hr,, : P(F, n) ~ F be a map that satisfies hF,,(D) eD for all DeP(F, n), and 
let 

X~ = E hF,.(D)co(D) 
D~P(F,n) 

On the collection = of all such pairs (F, n) we introduce a partial order 
as follows: 

(Fl, n0 ~_ (F2, n2)'ce-Fl -F2  and nl _<rt2 

Obviously, (E, ~ )  is a directed set, so that (X~o;F,,)(F,,)~Z becomes a net. 
Since F is compact, there exists an element xo~ in F and a directed subset 
(E', ~ )  of (E, ~ )  such that 

xo~ = "cA - lim(x~:r 

We claim that j(og) ( f)  =f(xo,) for all f e  A c(A) : 
Let feAt(A) and e > 0  be arbitrary. Then there exists ~0eE' such that 

If(x,o;r -f(xo~) [ < e /2  holds for all ~ e E' with ~ >- ~0. Moreover, there exists 
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(F, n ) e -  ~' such that (F, n) ~_ ~o,f~F, and 1/n< e/2. We thus have 

[j(co)(f)--f(x,o:V,.)[ = I j (co)(f)--  Z ' f(hr,.(D))o)(D)[ 
DEP(F,n) 

1 
___ c o ( F )  - 

n 

< - -  

2 

Hence I J (co) ( f ) - f (x~) [  < e. This concludes the proof. �9 

Corollary 3.3. If  A is a nonempty, r-compact convex subset of X, then 
the domain of definition of the map j '  is f~ (N) .  

Proof IfA is r-compact, then f~,(N) coincides with O~(N). The asser- 
tion then follows from Theorem 3.2, observing that for each f s X *  the 
restriction f l  A belongs to At(A). II 

In many applications the topology r will be induced by a norm I!" I1 
on X. A sufficient condition for all elements of f ~ ( N )  to have a barycenter 
in A is then given by the following theorem. 

Theorem 3.4. I f X  is a Banach space and A is a nonempty, closed, and 
bounded convex subset of X, then f2~(N) is in the domain of definition 
o f j ' .  

Proof We shall use the results on the Bochner integral listed in the 
Appendix. In the present context, A, N, and an arbitrary element co of 
I)~,(N) take the roles of S, E, and/~, respectively. We set s=  sup{ Ilxll = xeA} 
and observe that the conditions of Lemma A.1 and Theorem A.2 are met 
by taking X = A, f =  idA, Y= R, and g = s. Hence, the map ida is co-integrable 
and we can define 

x,o = fAx co(dx) 

Now, let L be an arbitrary element of X*. Then L of=L o ida is co-measur- 
able. Since L(A) is bounded, L o f  is o)-integrable. It then follows from 
Theorem A.3 that 
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Assume that xo, does not belong to A. Then, since A is closed and convex, 
there exists h~X* and t~R such that 

h(A) < t < h(x~o) 

[Koethe (1969), Separation Theorem]. On the other hand, we have 

f h(x)co(dx)<_t f co(dx)=t 
Since this is a contradiction, we conclude that xo,~A. �9 

Corollary 3.5. If  X is a Banach space and A is a closed, bounded, and 
separable convex subset of X, then the domain of  definition of  the map j '  
is ~ o ( ~ ) .  

Proof If A is separable, then ~ ( @ )  coincides with ~ ( ~ ) .  �9 

4. CONE BASE TRANSFORMATIONS 

As in Section 3, let (X, r)  be a Hausdorfflocally convex space. However, 
we now assume that A is a nonempty cone base in X that generates X [i.e., 
X =  lin(A)]. Again, let ~ denote the ty-algebra on A generated by the rA- 
open subsets of A. 

Definition 4.1. A map T: A ~ A is said to be a cone base transformation 
(CBT) of  A if it preserves convex combinations {i.e., if T(tx+ ( 1 -  t)y)= 
iT(x) + (1 - t)T(y) for all x, yeA  and tE [0, 1]}. 

Theorem 4,2. Every CBT T: A-~ A has a unique extension to a linear 
transformation T' of X. 

Proof We only sketch the proof  [for a more detailed argument see 
Gudder (1977), Theorem 2]. Since A is a cone base in X, every element y of 
p o s ( A ) -  {0} determines a unique pair (x(y), t(y))~A x R+ such that y =  
t(y)x(y). One then shows that the map T": p o s ( A ) ~  pos(A), defined by 

T,,(y)={t(oY)T(x(y) ) if y=~0 
if y = 0  

is positive [i.e., T"(sy+tz)=sT"(y)+tT"(z) for all y ,z~pos(A)  and 
s, teR+].  Since A is convex and generates X, every element z of X can be 
represented in the form z = y - x ,  with x and y being suitable elements of 
pos(A). After setting T'(z)= T"(y) -  T"(x), one shows that this definition 
does not depend on the particular choice of the representing elements x and 
y, and that the map T':X-~X is indeed linear. Since A generates X, this 
extension is unique. �9 
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Definition 4.3. A CBT T: A ~ A is said to be continuous if it is a continu- 
ous map from the topological space (A, z'a) into itself. 

Since the o--algebra ~ is generated by the rA-open subsets of  A, all continu- 
ous CBTs of A are @-~-measurable. 

Let T be a CBT of A. For all x~A, D ~ ,  and co~O~(~), we define 
(Alfsen, 1971) 

Pv(x, D) = 5( Tx)( D) (5) 

and 

T(co)(D) = co(T-](D))  (6) 

Lemma 4.4. Assume that T is a continuous CBT of A. Then, for every 
co ~ ( ~ ) ,  T(co)(. ) is again an element of  ~ ( ~ ) .  More precisely, T maps 
each of  the sets ~ ( ~ ) ,  ~ ( ~ ) ,  and ~ ( ~ )  affinely into itself. 

Proof The first statement is obvious. That the map Tis affine on ~ ( ~ )  
is straightforward, too. Let co be an arbitrary element of Fl~(~). Then there 
exists a separable set D in ~ with co(D) = 1. Since T is continuous, the set 
T(D) is also separable and we have T(CO)(T(D))=CO(T-](T(D))>_ 
co(D) = 1. Hence T maps f l~(~)  affinely into itself. The last statement is 
proved similarly, using the fact that the image of a compact convex set under 
a continuous affine map is again compact and convex (Koethe, 1969). m 

Lemma 4.5. Assume that T is a continuous CBT of A. Then the map 
PT: A x ~----~ R is a Markov kernel, i.e., (i) for each xeA, PT(X, ") is an 
element of  ~ ( ~ ) ;  and (ii) for each D e ~ ,  PT( ' ,  D) is ~-measurable. 

Proof Part (i) is obvious from the definition of PT. (ii) Let D be an 
arbitrary element of  9 ,  and let B be an arbitrary Borel set in R. We then 
have 

PT(', D)-l(g)= {x6A: Pr(x, D)~B} 

= {x~A: 5(Tx)(D)sB} 

= {x~A: 1D(Tx)6B} 

tA ~ if B ~ { 0 ,  1 } = ~  
= if {0, 1 } _ B  

T-I(D) if l eB, OCB 

t T-l(D c) if 0eB,  lCB 

Since Tis  Y-N-measurable, PT(', D ) - I ( B ) e ~ .  �9 
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The Markov kernel Pr associated with a continuous CBT of A defines 
an affine transformation of Q~(~) as follows (Bauer, 1978): 

fiT(co) = f A co(dx) P(x, " ) (7) 

Lemma 4.6. Assume that T is a continuous CBT of A. Then the two 
affine transformations Pr  and T of ~ ( @ )  coincide. 

Proof Let co and D be arbitrary elements of~o(@) and 9 ,  respectively. 
We then have 

Pr(co)(D) = f^ Pr(x, D) co(dx) 

= f ,  1D(TX) co(dx) 

= co(T-~(O)) 

= ]P(co)(D) �9 

In view of Lemma 4.4 we allow ourselves to also write T and PT when these 
maps are considered on the restricted domains f ls (~)  and fl~,(~). 

Theorem 4.7. For every CBT T of A the diagrams of (a) Figure 1 and 
(b) Figure 2 are commutative. 

T 
A , A 

Fig. 1 
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T 
A .... A 

j, 

a , ( v )  . a , ( v )  

Fig. 2 

Proof (a) Let x and D be arbitrary elements of A and 9 ,  respectively. 
Then we have 

T(f(x))(D) = g(x)(T- ' (D))  

= 1 r-l(D)(x) 

= lo(rx) 

= a(Tx)(D) 

(b) Let x be an arbitrary element of A. Then, by (a), ~(fi(x)) = ,~(Tx). Since 
j ' o  fi = idA, we obtain 

r(x) = j , o  a o T(x) 

=j' o ~o a(x) [] 

Theorem 4.8. For every continuous CBT T of A the diagram of Figure 
3 is commutative. 

Proof Let co a n d f b e  arbitrary elements of ~ ( ~ )  and X*, respectively. 
Then there exists a v-compact convex subset D of N such that c0(D)= 1. 
Since, by Theorem 4.2, the map T: A ~ A is affine, f o  T belongs to At(A). 
Thus, by Theorem 3.2, 

f o T(j'(CO))= f A f  o T(x) co(dx) 
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T 
A , A 

j ,  j ,  

 =PT 

Fig. 3 

Let K e N  be such that If(x) [ <K, for all x~D. Then 

fo  T(x) co(dx)= lira ~ - K +  
n ~ o o  / ~ 0  

= lim F. - K +  
n ~ c ~  l = O  

= f f(x) (~ro)(dx) 

=j(2Pro) ( f )  

= f ( j '  o T(o))) 

This shows that Toj'(co)=j'o :~(co), for all coe~",,(N). �9 

Corollary 4.9. If  A is r-compact and T: A ~ A is a continuous CBT of 
A, then the diagram of Figure 4 is commutative. 

The following theorem pertains to the case when the topology v is 
induced by a norm and the probability measures of interest are those with 
a separable support. Its proof is postponed to the end of the section, since 
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T 
A ,, , A 

j, j, 

a s ( v )  . 

Fig. 4 

it requires a few preliminary considerations about the continuity properties 
of the linear extension T' of a C B T  T. 

Theorem 4.10. Assume that the topology r is induced by a norm [1" II 
and that (X, If./[ ) is a Banach space. I f  A is closed and bounded and there 
exists f ~ X *  such that f ( A ) =  { 1 }, then the diagram of Figure 5 is commut- 
ative for every C B T  T: A ~ A. 

Corollary 4.11. Assume that the topology r is induced by a norm I1" II 
and that (X, ]1.11 ) is a separable Banach space, If  A satisfies the same condi- 
tions as in the preceding theorem, then the diagram of Figure 4 is commut- 
ative for every CBT T: A ~ A. 

T 
A . , ,  A 

j, j, 

Fig. 5 
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The following results are needed for the proof  of Theorem 4.10. 

Lemma 4.12. Let X be a normed space, and let A be a closed, bounded, 
convex subset of X such that f ( A ) =  {1}, for s o m e f s X * .  Then: (i) the set 
A is a cone base in X; and (ii) the cone pos(A) is closed. 

Proof From f (A)  = { 1 } it follows that f (af f (A))  = { 1 }. Hence 
0r This proves (i). (ii) Let (x.).~N be a sequence in pos(A) converging 
to an element x of X. Then there exist sequences (Y.).~N in A and (t.).~N in 
R+ such that x.=t.y . .  Since f ( x ) = l i m . ~ f ( x . ) = l i m . ~ t ~ f ( y . ) ,  and 
f (A)  = { 1 }, it follows that t~ ~f(x) .  Hence f (x)  > O. If  f (x)  = 0, then 
(x.).~N converges to 0 in norm, since Hx.lr=t.l[y.N<t.K, where K =  
sup{Llyll:yeA}. Thus, in this case x belongs to pos(A). If  f (x )>0 ,  then 
(y.).~N converges to x/f(x) in norm: 

Let e > 0  be arbitrary. Then there exists N e N  such that 
i t . - f (x )  l < ef(x)/2K and IIx-x.II < ef(x)/2, for all n> N. Thus, we have 

x 1 
f ~ - Y "  =f~x) Hx-f(x)y.[I 

1 
< (Hx-  t.y.H + Ht.y.-f(x)y.H) 

f(x) 

< 1 (ef(2x)+ef(x)K) 
f(x) 2K 

~ E  

for all n>N. Since A is closed, we conclude that x/f(x)eA. Hence, 
x~pos(h) .  �9 

Theorem 4. 13. Let (X, [l" II ) be a real Banach space and suppose that 
A is a closed, bounded, convex subset of X such that (i) X = lin(A) ; and (ii) 
there exists f eX*  with f (A)  = { 1 }. 

Then the Minkowski functional p . . . .  (6) is a norm on X, equivalent 
to I1' II. 

Proof. Let the closed unit ball of X be denoted by X1, and let A denote 
the closure of a set A in X. From the previous lemma it follows that pos(A) 
is closed. Moreover, since l in(A)=X, pos(A) is generating. For  each cER§ 
we set 

P,.= {x6pos(A): Ilxll ~c} 
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and 

Be = acon(P~) 

Since pos(A) is generating, 

X= ~ nBc 
n E N  

holds for all c > 0. Now, let c be an arbitrary positive number. It then follows 
from the Baire category theorem that one of  the sets nBc has an interior 
point (Dunford and Schwartz, 1958). Since this set is convex and symmetri- 
cal about 0, it then also contains 0 as an interior point. Hence there exists 
7 > 0  such that X1-~TBc, and for all x e X  we have 

1 
- o k - <  Ilxtl <_cp~ 
7/ 

i 

(the inequality to the right being a consequence of Bc~cX1). This shows 
that for all c > 0 the Minkowski functional p ~  is a norm on X, equivalent 
to 1t" I1- Since the triple (X, 11" [1, pos(A)) satisfies all conditions of  Theorem 
A.4, we conclude that the statement 

P~ = Ps< 

holds true for c =  1. However, Bc=cB1 for all csR,  so that the statement 
holds true in general. Since A is bounded and there ex i s t s f sX* w i t h f ( A ) =  
{1}, there exist constants 0 < a < b  such that a <  ][x[[ _<b for all xeA.  It is 
easily seen that B,___acon(A)C_Bb. For  all xEX we thus have 

1 
7 [Ixll -< P~  (x) = p~h(x) <_ p,co,(A)(x) <-- pBo(x) = p~ (x) <_ a II x ll 
O 

where a is chosen such that X1 -~ aB,. This concludes the proof. �9 

Corollary 4.14. Let (X, 11" 1[ ) be a real Banach space and suppose that 
A is a closed, bounded, convex subset of  X satisfying the conditions (i) 
and (ii) of  the preceding theorem. Then every CBT T: A ~ A has a unique 
extension to a continuous linear transformation T' of  X. 

Proof Let T be an arbitrary CBT of  A. Then, by Theorem 4.2, T has 
a unique extension T' to a linear transformation of X. We have to show that 
T' is continuous: By the preceding theorem, there exist a, b > 0 such that 

apa~o~(~)(x)<llxl!<bp . . . .  ~a)(x) 
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for all x~X. Now, let x be an arbitrary element of  X. Then 

x ~ (llx [I/a) acon(A) 

Since T' maps acon(A) into itself, we also have T'(x)~(llxll/a) acon(A). On 
the other hand, y E ([q x [I/a) acon(A) implies that 

I[Y It/b < p . . . .  (A)(Y) < tlx I]/a 

Hence IlT'(x)ll<(b/a)l]xtl. �9 

We now proceed to the proof  of Theorem 4.10. 

Proof of Theorem 4.10. Let co be an arbitrary element of  f ~ ( ~ ) ,  and 
assume that T: A ~ A is a CBT. Let further g be an arbitrary element of X*. 
Then, as a consequence of Corollary 4.14, g o T' belongs to X*, too. As in 
the proof  of  Theorem 3.4, we shall use the results on the Bochner integral 
listed in the Appendix. Again, we let A, @, and an arbitrary element co of  
f~s(~) take the roles of S, E, and p, respectively. Moreover, we set X = A, 
Y= R, f =  idA, and L = g o T'. Having the proof  of Theorem 3.4 in mind, it 
is easy to see that thereby the conditions of  Theorem A.3 are satisfied. Hence 
we have 

o T'(j'(co))=go T' fax  co(dx) g 

: f~xgo T'(x) co(dx) 

As in the proof  of Theorem 4.8, one then shows that 

This proves that Toj'(co)=j'o T(co). 

f ,  
r ' (x)  co(dx) = J A g(x) (?co)(dx) go 

=j(1"(co))(g) 

=g(j'o T(co)) 

5. STATE SPACE TRANSFORMATIONS 

In this section we apply the results of the previous sections to the state 
spaces of  noncommutative measure theory and to their transformations. 

Throughout  the section let (L, _<, ')  denote an orthomodular poset. In 
its most general definition, a state space over L is a nonempty convex subset 
A of ~ (L )  (Fischer and Rfittimann, 1978; Mielnik, 1974). 
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Let A be a state space. Since A is convex, it is the base of a generating 
cone in lin(A). It is not hard to show that the Minkowski functional 
P . . . .  (a) on lin(A) provides a norm, which we shall denote by I1" N~. A norm 
that can be defined on J(L) and all its subspaces is the variation norm: 

II~ II~ = sup {p (p) - p ( p ' ) : p s L }  

Notice that ]FP II~- < lip [IA holds for all p ~lin(A). We also consider the topol- 
ogy r ofpointwise convergence on J(L) and its subspaces [i.e., a net (p~) of 
elements of  J(L) converges to p ~J(L) in the topology r if p~(p) --* p (p) for 
all peL]. Considering J(L) as a subspace of  R L, r appears as the relative 
topology on J(L) of  the product topology on R L. It then follows from the 
Tychonov theorem that f2(L) is r -compact .  Since every r-open neighbor- 
hood U of  0 in J(L) contains a set of  the form {p eJ (L)  : [P(Pi) [ < 1/N, i= 
1 . . . .  , n}, where Pl . . . . .  pn are suitable elements of L and N is a suitable 
natural number, the set ~ (L )  and all its subsets are r-bounded. Moreover, 
since I]p][~_> IIptl~ for all ps l in(A),  the set A is bounded in both norms. 
Notice also that II �9 IIA-convergence implies [[" I[~-convergence and Jl" N~-con- 
vergence implies r-convergence. For  more details, see, e.g., R/ittimann 
(1979, 1985), Schindler (1986), and Zierler (1959). 

Cone base transformations of  a state space A will be referred to as state 
space transformations. Thus, all we require of  a state space transformation 
is that it preserve mixtures (convex combinations) of  states. Since the unit 
ball of  the normed space (lin(A), I]. [IA) coincides with the intersection of the 
sets (1 + 1/n) acon(A), neN,  the unique linear extension T' of a state space 
transformation T is I]' IlA-continuous. 

Theorem 5.1. Let A be a state space over L, and let ~ denote the o'- 
algebra on A generated by the r-relatively open subsets of A. Suppose that 
T: A ~ A is a r-continuous state space transformation. Then the diagram in 
Figure 3 is commutative. If, in addition, A is r-closed, then the diagram in 
Figure 4 is commutative. 

Proof. The first part of  the above theorem is only a paraphrase of 
Theorem 4.8. Assume that A is r-closed. Then, as a subset of the r-compact 
set f~(L), A is also r-compact. Thus, Corollary 4.9 applies. �9 

It is easy to see that in the special case when A equals f2(L), resp. 
~ ( L ) ,  resp. f~.(L), every homomorphism, resp. o--homomorphism, resp. c- 
homomorphism, q5 from (L, _ ,  ' ) to itself induces a r-continuous state space 
transformation T of ~(L) ,  resp. f2~,(L), resp. fl~(L), according to 

T(p)(p) = p ((I)(p)) 

for all p ~ L. 
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If  the state space transformation T: A ~ A under consideration is not 
r-continuous, then it is often possible to apply Theorem 4.10 in the following 
form: 

Theorem 5.2. Let A be a state space over L, and let lin(A) be endowed 
with one of  the norms II" l] = {1" IIA o r  II" [I = 11" [lo. Let ~ denote the o--algebra 
on A generated by the tq" II-relatively open subsets of A. Assume that A" is 
I1" II-closed and lin(A) is complete with respect to the norm t1" I1. Then the 
diagram in Figure 5 is commutative for every state space transformation 
T: A ~ A. If, in addition, lin(A) is ]l' I]-separable, then the diagram in Figure 
4 is commutative. 

Proof Let lin(A)* denote the dual of the Banach space X =  lin(A). We 
have shown that A is [1. II-bounded. Letf~ be the linear functional on lin(A) 
defined by f~(/~)=/.t(1),/~ ~lin(A). Clearly, fl is v-continuous and thus also 
belongs to lin(A)*. Since f~(A)= {1}, we see that X and A satisfy all condi- 
tions of  Theorem 4.10 with respect to the norm I1" II. This proves the first 
part of  the theorem. If, in addition, lin(A) is I1" N-separable, then we apply 
Corollary 4.11 to prove the second part of the theorem. [] 

If  A is a nonempty section of fl(L) [i.e., A = aft(A) c~ ~(L)],  and if A is 
cr-convex (i.e., for all sequences (x,) in A and all sequences (tn) in R+ with 

�9 �9 �9 N ~,=1 tn= 1, there exists x~A with x =  r-lma~w~o ~,=~ t,x,], then lin(A) is 
complete with respect to the norm IL" I[A (Rtittimann and Schindler, 1987). 

Let A be any of the sets f~(L), f~(L) ,  or I'~(L). Then A is a o--convex 
section of f~(L) (R/ittimann and Schindler, 1987). Thus, (lin(A), H" [IA) is a 
Banach space. Since fl(L) is r-closed and A equals ~(L)  c~ lin(A), it follows 
that A is I1' IIA-closed. Hence we obtain the following theorem. 

Theorem 5.3. Let A be any of the sets fl(L), ~ ( L ) ,  or f~c(L), and 
assume that A is nonempty. Let ~ denote the o--algebra on A generated 
by the II �9 I]a-relatively open subsets of A. Then the diagram in Figure 5 is 
commutative for every state space transformation T: A ~ A. If, in addition, 
lin(A) is l[ �9 fla-separable, then the diagram in Figure 4 is commutative. 

We conclude this section with an example. 
Let H be a complex Hilbert space, and let L denote the set of all 

orthogonal projections on H. Then the order P< Q.c~P= PQ (=QP)  makes 
L into a complete lattice with idn as the largest and the 0-projection as the 
smallest element. Together with the orthocomplementation P '  = idL,- P, the 
pair (L, _<) forms a complete orthomodular lattice (Gudder, 1979). Let 
A= f~,.(L). As a consequence of the Gleason theorem, there exists a linear 
isomorphism W from the real vector space lin(z%) onto the real vector space 
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~J-s,(H) of self-adjoint trace class operators on H, satisfying 

P (P) = tr(Ud(#)p) 

for all P~L and # ~lin(z~). This isomorphism maps z~ onto the set ~ ( H )  of 
von Neumann density operators [i.e., positive elements of Y-~a(H) with trace 
norm 1]. More precisely, the map W is an isometrical isomorphism between 
the two Banach spaces (lin(A), It. Ip~) and (Ysa(H), 11" Htr), where 1t" [[tr 
denotes the trace norm. For more details see Gleason (1957) and Rtittimann 
(1957). 

Theorem 5.4. Let H be a complex Hilbert space. Let X denote the real 
vector space of self-adjoint trace class operators on H and let A stand for 
the convex set ~ ( H )  of von Neumann density operators on H. Let further 

denote the o--algebra on A generated by the ]1 �9 lit:relatively open subsets 
of A. Then A is the base of a generating cone in X and for every cone base 
transformation T: A ~ A the diagram in Figure 5 is commutative. If  H is 
separable, then the diagram in Figure 4 is commutative. 

Proof Notice that 3-~a(H)=lin(A) and II. I/tr = II" II~. Since W is an 
isometrical isomorphism between the real Banach spaces (lin(A), It" Irx) and 
(Y-sa(H) ,  If" Iltr), mapping z~ onto A, the first part of the theorem follows 
from the first part of  Theorem 5.3. If  H is separable, then Y-~a(H) contains 
a countable It" Nt:dense subset of operators of finite rank and the second 
part of Theorem 5.3 applies. [] 

A P P E N D I X  

This Appendix is meant to provide a short review of the basic results 
on the Bochner integral used in the paper. For a detailed treatment of these 
topics we refer to Dunford and Schwartz (1958) and Yosida (1966). For the 
sake of completeness we also include a result on base normed spaces used 
in Section 4. 

Let (S, X, p) be a positive measure space with #(S) < oo, and let X be 
a Banach space. Let further N(X) denote the Borel or-algebra on X (i.e., 
the ~r-algebra generated by the open subsets of X). A Y.-sS(X)-measurable 
function f :  S ~ X is called p-simple if there exists a finite subset F of X such 
that #(f- l (F))=#(S) .  In this case the integral o f f  over S is given by 

S',,,~FXP(f-I(X)). 
A function f :  S ~ X  is said to be #-measurable if there exists a sequence 

of p-simple functions h, :S ~ X  converging to f i n  #-measure. The function 
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f is called p-integrable if, in addition, 

lim f I hm(s) - h.(s) I /2 (ds) = 0 
r t / , / 7  ---~ o o  L Js 

The integral o f f  over S is then defined as the limit in X of the sequence 
is h.(s)/2 (ds). 

Lemma A.1. Let X and Y be Banach spaces and suppose that f :  S-- ,X 
and g: S ~ Y are both p-measurable. I fg  is/2-integrable and [[f(s)]] _< Ng(s)[[ 
holds/2-a.e., then f is/2-integrable. 

For a proof see Dunford and Schwartz (1958), pp. l lTff. 

Theorem A.2. A function f :  S ~ X  is/2-measurable if and only if (i) f 
is/2-essentially separably valued (i.e., there exists a/2-null set N such that 
f ( S - N )  is separable in X);  and (ii) for every x* ~X*, x ' f  is/2-measurable. 

For a proof see Dunford and Schwartz (1958), pp. 149ff. 

Theorem A.3. Let X and Ybe Banach spaces. Assume that f :  S ~ X  is 
a/2-integrable function and that L : X  ~ Y is a continuous linear operator. 
If  L o f is also/2-integrable, then L ~sf(S) /2 (ds) = is  L o f ( s )  /2 (ds). 

For a proof see Dunford and Schwartz (1958), pp. 153ff. 

Theorem A.4. Let (X, ]1" ]/) be a real Banach space with a closed gener- 
ating cone P. Let P1 denote the set {x~P:[ lx l l<_l} ,  and set B= 
conv(Pj w -P1) .  Then the Minkowski functional Ps(" ) is a norm on X, 
equivalent to I[" II. Moreover, p .  coincides with IJ" II on P, and l]' ] l - c l  B ~  tB 
holds for all t>  1. Thus, the two Minkowski functionals Pll-ll-ole and p~ 
coincide. 

An equivalent version of this theorem is proved in Asimov and Ellis 
(1980), p. 32. 
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